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Advances in molecular dynamics (MD) force field$ have 0.5 : 05—
recently allowed the nearly quantitative interpretation of protein A 0.4 :"_‘:"3;"-“9 .. | B ol M A
backbone dynamics as measured by NMR spin relaxgtiand o ’ ’ /
residual dipolar couplingsThese improvements were solely due o 0.3 L :‘_-‘. 'E' 0.3 | ' L
to modification of the backbone,y dihedral angle potential, as = - . 5 { ]
implemented in the AMBER99SEand CHARMM22/CMAP force s . = =02
fields. Amino acid side-chain motions, on the other hand, often ™ 0.1} | ’ 0.1
play an important functional role, but their accurate simulation has o
been a considerable challenge in the pga%t. 01 02 03 04 05 10 30 50 70
Because changes in side-chain motions are not necessarily J(0) [Exp, ns] Residue
correlated to changes in protein backbone moblftiy,is unclear 0.3 0.2
how these force-field modifications affect side-chain dynamics. < e % vt
Here, we compare experimental and simulated side-chain NMR & 0.2 ’ . c .
relaxation parameters of calbindingDand ubiquitin and report g ) . g ’
significant improvements in the quantitative representation of side- = . - 0.1 R
chain motions by computation. 0.1 ; 3‘3 3;’
Methyl groups are the dynamically best studied side-chain = v = W
moieties of protein§-1> Deuterium relaxation experiments of ! e’
13CH,D methyl groups report on picosecondanosecond dynamics 0.1 0.2 0.3 0.1 0.2
and measure up to five different relaxation rates for each methyl J(mD) [Exp, ns] J(sz) [Exp, ns]
group at a given 531_‘ie|d.14 They allow the unambiguous egtraction Figure 1. Comparison between experimedtand MD back-calculated
of spectral densities(0), J(wp), and J(2wp), where wp is the spectral densities)(w) reflecting side-chain dynamics of &abound

Larmor frequency of deuterium. As shown here, these spectral calbindin. Where not visible, the experimental error bars are smaller than
densities lend themselves to direct comparison with computer the symbols. (A)J(0) color coded by residue type: Ala (black), lle (red),

; : ; ; R ; _ Leu (blue), Met (magenta), Thr (cyan), Val (green). Correlation coefficient
simulations (Figure 1). Alternatively, model-free dynamics param excludes Thr45. (BJ(0) as a function of residue number from experiment

eter§1o47 can be determined from the experiment first and (pjack) and MD (red). (CJ(wp) at 500 MHz (black) and 600 MHz (red).
compared with the corresponding simulated parameters (Figure 2).(D) J(2wp) at 500 MHz (black) and 600 MHz (red).

Methyl side-chain dynamics of calbindin in its calcium-bound
form have recently been report&dUp to five spectral densities
J(w) have been determined for each of the 37 analyzable methyl the C-C bond that connects the methyl group with the rest of the
groups and interpreted in terms of a model-free analysis. protein, andCcuy(t) is the correlation function describing the methyl
Here, a 50 ns MD simulation of @&bound calbindin (PDB group rotation itself. Equation 1, which is a modification of the
entry 3ICB® with the mutation P34M) was performed using the extended model-free approatt¥! factorsC(t) into three parts by
AMBER 8%simulation program with the parameter set AMBER99SB assuming statistical independence betweenCCbond vector
following the protocol described previoustylhe starting config- reorientation, methyl group rotation, and overall tumbling, which
uration was generated by immersing the calbindin structure in a is independently validated by MD (see Supporting Information).
cubic box with 5778 explicit SPC water molecules and neutralizing The Ccc(t) correlation functions were determined after aligning all
counterions. Production dynamics were run at 300 K and 1 atm MD snapshots with respect to the reference snapshot at 25 ns and

pressure, with snapshots saved every 1 ps. by fitting the computed correlation function by a sum of five
The spectral densitied(w) = /., C(t)cost)dt are back- exponentials and an offs&t.Correlation functions were calculated
calculated from the trajectory by using the following parametrization out to 6 and 12 ns, which is beyond calbindin’s isotropic overall
of the reorientational time-correlation functi@it) of the methyl tumbling correlation time ;. = 4.04 ns). Due to the known
C—H bond vectors: difficulty in realistically modeling the correlation time of the methyl
group rotation by MD{31522the correlation function€c,(t) were
CH = e_tITCCcc(t)CCH3(t) 1) parametrized in a model-free Wéyas Cc(t) = 1/9 + 8/9 exp-

(—t/tcn,) with the methyl rotation correlation timesy, treated as

fit parameters to minimize the difference between the simulated
and experimental spectral densitié&v). Figure 1 shows this
 Florida State University. comparison fo)(0), J(wp), andJ(2wp). The agreement fa¥(wp)

* University of Cincinnati. and J(2wp) both at 500 MHz (black symbols) and 600 MHz (red

where; is the experimentally determined overall tumbling cor-
relation time,Ccc(t) is the reorientational correlation function of
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Figure 2. Calbindin methyl order parameters derived from fitting of the
experimental spectral densitlsvith correlation functions of eq 2 (A,B)
and eq 1 (C,D), compared with order parameters extracted from fitting MD-
derived spectral densities to the same equations. (B,D) Black and red circle
correspond to experimental and M, respectively.

symbols) field strengths (panels C,D) is excellent (correlation
coefficientsr = 0.94), partly because of adjusting.,, whereas
for J(0) (panels A,B), the agreement is slightly worse=( 0.86)

but still remarkably good considering the high sensitivity of NMR
methyl relaxation with respect to the side-chain environrefi.
The rmsd of 0.06 between experimental and simuld{éyivalues

is smaller than the rmsd between the experimeli@jlof the C&*-
bound and the apo state. The largest discrepancy is found for Thr4
(boxed data point) whose time correlation function is not well-
converged;that is, its$ value has a low precision (see Supporting
Information). On average, the methyl groups of Leu and Ala

residues show the best agreement with experiment, whereas the

methyl groups of Val and Thr residues deviate most.

Experimentally extracted spectral density functions are often
interpreted®1418in terms of model-free parameters that enter the
functional forni*

Cist) =€ {19 + (1 — S/9)e "™} )
whererte is an effective correlation time for both the methyl group
rotation and the reorientational motions of the-C vector. In
Figure 2A,B, the values obtained by fitting eq 2 to the MD-
derived spectral densities are compared with the experimé&htal
values!® Alternatively, the expression of eq 1 can be fit to the

Consistent with the side-chain results, AMBER99SB reproduces
backbone N-H order parameters of €abound calbindif* well
(r = 0.86).

These results demonstrate that the modified backbone potential
of AMBER99SB considerably improves the description of amino
acid methyl side-chain dynamics, suggesting a direct connection
between the accurate representation of the structure (and dynamics)
of the protein backbone and side-chain mobility. The benchmarks
and the analysis strategy presented here should be useful for the
improvement of amino acid side-chain force fields.
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